. Example 1. We know that
$$f: x \mapsto x^2$$

is its. Have we show that it is not
uniformly its. Take $g = \frac{1}{2}$. Let $\delta = 70$.
Then $\exists N \in N \text{ s.t. } \forall s \in \delta$. Define $x, u :$
 $x = N + \frac{1}{N}, \quad u = N$.
Then $[x - u] = \frac{1}{N} < \delta$ but
 $|f(x) - f(u)| = (N + \frac{1}{N})^2 - (N)^2 = 2N \cdot \frac{1}{N} = 2 > E$
So f not uniformly its.
Example 2. $f: x \mapsto \frac{1}{x^2} \quad \forall x = 0 \quad (\text{ov } x \neq 0)^2$.
Then f is not uniformly its (although it is its)
Hint $\int_{x} x = \frac{1}{n} + u = \frac{1}{2n}$.
Example 3. Let $f(x) = \frac{1}{x^2 + 1} \quad \forall x$. Then f is
uniformly its.
Hint $: |\frac{1}{x^2 + 1} - \frac{1}{u^2 + 1}| = \frac{|u^2 - x^3|}{(x^2 + 1)(u^2 + 1)} \leq |u \cdot x| \cdot \frac{|u| + |x|}{(x^2 + 1)(u^2 + 1)}$

$$\leq |\mu - \chi| \left(\frac{|\mu|}{|\mu^{+}+1|} + \frac{|\chi|}{|\chi^{+}+1|} \right) \leq |\mu - \chi| (1+1)$$

Similarly, $\chi \mapsto \chi$ is uniformly its on $[e, o]$ if $e = 0$.
Th $(Lipschiltz Function)$ Let $f: A \rightarrow |R|$ be
Lipschilty - continuous in the sense that f
is constant this to site.
If $(\chi) - f(\mu) > \langle \chi| \chi - \mu| \quad \forall \chi, \mu \in A$
Then f is uniformly its .
 $f(\chi) - f(\mu) > \langle \chi| \chi - \mu| \quad \forall \chi, \mu \in A$
Then f is uniformly its .
 $pf \cdot E \neq g \notin \chi$
Remark. But not the converse, i.e.
 mif its $\chi = Lipschiltz$
 $(e.g. \chi \mapsto S\chi \text{ on } Eoil \qquad)$
Th $(Im iform Continuits Th)$.
Let $A \subseteq |R|$ be bounded e' is losed " in the
sense $\chi = h$
 $\chi = himan, ant A \forall h \implies \chi \in A$
 $(e.g. A is [a, b] for some $a, b \in |R|$). Let
 $f: A \rightarrow |R|$ be its Then f is unificits.
 $(He converse is of come alwaystrue)$.$

Proof. Suppose
$$f \in not uniformly its :$$

 $\exists \epsilon > 0 \quad s.t. \quad \forall \delta > 0 \quad \exists x, u \in A \quad with$
 $|x-u| < \delta \quad bwt \quad |f(x) - f(u)| > \epsilon ; in particular,$
 $fw this \epsilon > 0 \quad one has that \quad \forall \quad n \in M \quad \exists$
 $x_n, u_n \in A \quad with \quad |x_n - u_n| < \frac{1}{m} \quad bwt \quad |f(M) - f(M)| \geq \epsilon ; t$
 $h \quad hws \quad way, ore has two acq (X_n) & (M_m) \quad in the formation of the stand of the$